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Abstract 
 
Recently a stress-based FLD due to its path-independency has become a new mainstream technology for prediction 

of forming limit in tube hydroforming processes, which usually have non-linear strain path. However, the random 
characteristics owing to experimental errors, inherent measuring equipment errors, dimensional tolerance of as-
received blank, inconsistent lubrication condition and so on lead to uncertainty with regard to the position of the form-
ing limit curve on the stress-based FLD. In this work, to take into account the uncertainty on the stress-based FLD, a 
probabilistic modeling on the stress-based FLD with confidence level is firstly attempted. With the assumption of all 
experimentally measured data as normally distributed random variables, stochastic evaluation of the reliability of the 
stress-based FLD is carried out. Moreover the statistical correlation between measured data during a bulge test and the 
material parameters is investigated by using the first-order approximated mean value and variance. The reliability is 
analytically calculated based on first-order reliability method (FORM) and verified with Monte-Carlo simulation 
(MCS). Finally, at a given deviation of measured data, the band width of forming limit curve on the stress-based FLD 
to be able to satisfy the required confidence level is determined.  
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1. Introduction 

In general, a frequently used technique for evaluat-
ing busting failure in sheet metal forming is the form-
ing limit diagram (FLD), where principal strain pairs 
are compared to a forming limit curve (FLC). In prac-
tice, a scatter band rather than a curve is obtained. 
The classical FLD method has been proven to be 
useful in judging forming severity in industry. How-
ever, the strain path dependency of the FLD is obvi-
ously a serious limitation to its use whenever non-
proportional strain paths, especially as in hydroform-

ing processes, are expected. One way to overcome 
this disadvantage is to use a forming limit stress dia-
gram (FLSD). As the more general forming limit 
criterion, it was found that a stress-based forming 
limit criterion was independent of the strain path and 
then adopted the criterion for analysis of flanging dies 
[1]. Afterward, the effect of FLSD was rediscovered 
and it was necessary to use the FLSD in all forming 
processes [2, 3]. Furthermore, the calculation of 
stress-based forming limits based on experimental 
strain data using the method proposed by Stoughton 
and a more relevant study on the application of stress-
based forming limit criterion under linear and com-
plex strain paths were performed [4]. To predict the 
onset of necking in sheet metal loaded under non-
proportional load paths, as well as under three-
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dimensional stress states, an extended stress-based 
forming limit curve (XSFLC) was proposed [5].  

Although there are many experimental and theoretical 
studies to predict the forming limits, it is crucial to rec-
ognize that the use of FLD or FLSD has definite limita-
tions. First, there are different variations in the experi-
ment procedure and material parameters that lead to 
uncertainties in the evaluation of the stress-based FLD 
for a given process. In other words, the variability of the 
raw material parameters such as strength coefficient, 
work hardening, anisotropy, yield stress and so on 
causes uncertainty with regard to the position of the 
forming limit curve on the stress-based FLD. In addition, 
the measured data naturally has random characteristics 
due to experimental errors, inherent measuring equip-
ment errors, dimensional tolerance of as-received tube, 
inconsistent lubrication condition and so on. Taking the 
variation of the material parameters into account, sev-
eral researchers [6-8] have proposed a more general 
concept, namely the forming limit band (FLB), as a 
region covering the entire dispersion of the forming 
limit curves in Fig. 1. The strain-based forming limit 
curve for reliability analysis combined with the sheet 
forming simulation and the system reliability assess-
ment techniques was established [9]. These works in the 
literature pointed out that the location of the forming 
limit curve with some uncertainties should be dealt with. 
Though few research works attempted to study the ef-
fect of the material parameters on the dispersion of 
strain-based forming limit curve, a systematic and prac-
tical approach to figure out the reliability of the stress-
based forming limit curve due to variation of the mate-
rial parameters was rare. 
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Failed Zone

Upper bound of FLC

Lower bound of FLC

Marginal zone

Safe zone

Failed Zone

Upper bound of FLC

Lower bound of FLC

 
 
Fig. 1. A forming limit band in a strain-based FLD [8]. 

In this paper, firstly, in order to theoretically construct 
the deterministic stress-based FLD, plastic instability 
based on the Hill’s quadratic plastic potential is intro-
duced. Since the theoretical limit stress on the FLSD is a 
function of the only strength coefficient, work-
hardening exponent and anisotropy parameter, accurate 
and appropriate material properties of tubular material 
need to be measured under the actual condition in hy-
droforming. Thus the statistical correlation between the 
material parameters and measured data during a bulge 
test is evaluated by using the first-order approximate 
mean value and variance. All experimentally measured 
data are assumed as normally distributed random vari-
ables to take into account the uncertainty in the material 
parameters. And then, a stochastic modeling on the 
stress-based FLC with confidence level is first at-
tempted and statistical evaluation of the reliability of the 
stress-based FLD is carried out. The reliability was 
analytically calculated based on first-order reliability 
method(FORM) and verified with Monte-Carlo simula-
tion(MCS). Finally, at a given deviation of material 
parameters, the bandwidth of the forming limit curve on 
the stress-based FLD is determined to be able to satisfy 
the required confidence level. 

 
2. Analytical determination of stress-based 

FLD 

2.1 Plastic instability based on diffuse necking 

Consider a tube to be thin enough for the plane 
stress hypothesis to be valid. From Hill’s quadratic 
yield criterion for anisotropic materials [10], 

 
2 22 ( ) ( ) ( )ij y z z xf F Gσ σ σ σ σ= − + −

  

    

2 2 2 2( ) 2 2 2 1x y yz zx xyH L M Nσ σ τ τ τ+ − + + + =  (1) 

where F, G, H, L, M, and N are the anisotropy pa-
rameters. And f is the plastic potential identified as 
the scalar function that defines the elastic limit sur-
face. Then under plane stress condition, the effective 
stress for planar isotropic materials can be written as 
follows: 
 

2 2
1 2 1 2

2
1

R
R

σ σ σ σ σ= + −
+

 (2) 

 
where 1σ and 2σ are the principal hoop and axial 
stress, R is an anisotropy parameter. The plastic strain 
increments are given by considering the normality 
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condition, incompressibility condition and the equiva-
lent work definition of effective strain increment as 
follows: 
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where 1dε , 2dε and 3dε are the plastic strain in-
cremental components along the principal hoop, axial 
and thickness directions, respectively.  

Assuming that principal stresses maintain constant 
ratios and directions, the ratio of stresses and strain 
increments also will not change as represented by 

2 1/α σ σ= , 2 1/d dβ ε ε= . From the diffuse necking 
criterion, the condition for plastic instability is satis-
fied when the load reaches a maximum value along 
both principal directions as, 

 
2( ) 0 & ( ) 0d P r p d prlπ+ = =  (4) 

 
where p is an internal hydraulic pressure and P is an 
axial force, which are applied independently. Also r 
and l are the current values of the radius and length of 
the tube. This condition leads to the following simul-
taneous constraints: 1 1 1d dσ σ ε= and 2 2 2d dσ σ ε= . 
Thus the following instability criterion in terms of 
sub-tangent Z for the anisotropic materials can be 
obtained as [11], 
 

2 2

2 3/ 2
1 1 (2 ) (2 )

4(1 )
d

Z d
σ α α ρ αρ

σ ε αρ α
− + −

= ≤ ≡
− +

Ψ
Ω
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where 2 /(1 )R Rρ = + . 
 
2.2 Limit stresses for stress-based FLC 

To obtain forming limit curves in terms of limit 
stresses, it is necessary to introduce critical principal 
strains 1

cε , 2
cε along the hoop and axial direction, 

respectively. With the work-hardening law nKσ ε= , 
Eq. (5) can be written as 

 
1 1 d n
Z d

σ
σ ε ε

= = =
Ψ
Ω

 (6) 

Assuming proportional loading, the equivalent strain 
can be described as 
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where ( )( ) ( )

0.5 0.521 1 1 2R Rβρ β −= + + + +Θ . 
According to Eqs. (6) and (7), the limit strains 

based on the plasticity instability yield as 
 

1
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c
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=
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Ω
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In addition, the plastic strain components along the 
principal hoop and axial directions from Eq. (3) can 
be also expressed in terms of limit strain and stress 
components 
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Finally, the limit hoop and axial stress, 1

cσ and 2
cσ , 

when the bursting failure occurs, can be obtained as 
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 (10) 

 
3. Stochastic material parameters 

Above all, in order to analytically construct the 
stress-based FLD in terms of limit stresses in Eq. (9), 
the limit strains should be calculated according to 
specific strain ratios from Eq. (8). Since the limit 
strain is a function of the material parameter n and R, 
accurate and appropriate material properties of tubu-
lar material need to be measured under the actual 
condition in hydroforming. Thus the following data 
should be measured during bulging of tubes to ana-
lytically predict limit strains and stresses as shown in 
Fig. 2(a) radius of curvature in hoop direction 1ρ , (b) 
radius of curvature in longitudinal direction 2ρ , (c) 
internal pressure p, (d) thickness t, (e) friction coeffi-
cient µ and (f) axial feeding force aP . These meas-
urements are converted into true stress–strain data  
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Fig. 2. Free body diagram for free bulge test of tubular blank. 
 
through an analytical procedure, and then the flow 
stress characteristics of the tubular material are ob-
tained from fitting into known and accepted forms, 
finally as will be mentioned in Section 3.1. 

 
3.1 Flow stress obtained from tube bulging 

Consider a thin-walled, open-end tube under inter-
nal hydraulic pressure and axial load, which are ap-
plied independently. The finite strain components for 
ith different bulging stage can be calculated from the 
measured data as the following equations: 
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where 0ρ , 0t and 0l are the initial inner radius, wall 
thickness and length of the tube, respectively. The 
tube in the die cavity is assumed to be thin enough for 
the plane stress hypothesis to be valid. For an element 
at bulging tip of the tube, the following equilibrium 
equation can be written [12]: 
 

1 2

1 2

i i i

i i i
p
t

σ σ
ρ ρ

+ =  (12) 

 
The two radii of curvature 1ρ and 2ρ can be calcu-

lated with the measured bulge height h in Fig. 2: 
 

1 2
hρ =  (13) 

2 2 2
0 0

2
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h
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ρ

+ − +
=

−
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The force equilibrium in axial direction of tubular 

blank, which is exerted in the bulged tube, can be 
expressed as follows: 

 

( )2
2 1 12i i i i i i i i

f a st p P P Pσ πρ π ρ⎡ ⎤ = + − −⎣ ⎦  (15) 

 
where i

fP , i
sP and i

aP are the friction force between 
tool and tube, sealing force against pressurized fluid, 
and the force to feed the tube in axial direction for ith 
different pressure level, respectively. As can be seen 
in Eq. (15), the frictional effect between free bulge 
die and tubular blank was considered in this work, 
and the axial force to seal the tubular blank against 
pressurizing was also taken into account to derive the 
force equilibrium to accurately describe the actual test 
condition. These forces induced by frictional effect 
and tube sealing can be expressed as Eqs. (16) and 
(17). 
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2
0

i i
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where µ means the friction coefficient, w is bulge 
width and il is tube length for ith different bulging 
stage, respectively. Once stress and strain components 
are calculated, effective stress iσ and effect strain 

iε for ith pressure level can be determined from Eqs. 
(2) and (3). More frequently, the anisotropic parame-
ter R in Eq. (2) for normal anisotropy materials is 
represented by the quantities 0r , 45r and 90r , 
 

0 45 902
4

r r rR + +
=  (18) 

 
where 0, 45 and 90 refer to the angle made with the 
rolling direction. Finally, successive effective stress 
and effective strain values can be fitted into the gen-
eral power law as the following.  
 

nKσ ε=  (19) 
 

Using the least square method, the strength coeffi-
cient K and work-hardening exponent n can be de-
duced by 
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where q is total number of bulging stages and E(Z) 
denotes mean value of a random variable Z. 
 
3.2 Variances of material parameters 

Since the measured data naturally have random 
characteristics due to experimental errors, inherent 
measuring equipment errors, dimensional tolerance of 
as-received tube, inconsistent lubrication condition 
and so on, the internal pressure p, thickness t, bulge 
height h, friction coefficient µ , and three anisotropy 
parameters 0r , 45r and 90r can be considered as 
normally distributed random variables. Namely, a 
random vector Z , , , , , , , , ,

Ti q i q i qp p t t h h µ⎡ ⎤= ⎣ ⎦L L L . 
Since the limit stress is a function of only material 

parameter K, n and R, the statistical correlation be-
tween the material parameters and measured data 
needs to be evaluated. For a general function of sev-
eral random variables, G(Z), the first-order approxi-
mate mean value, denoted as E[…], and variance, 
denoted as Var[…] of G(Z) are as follows [13]: 
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Thus, with the assumption of all random variables to 
be statistically independent, the mean value and vari-
ance of K can be determined by 
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In a similar way, the mean values and variances of n 
and R can be obtained from 
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Therefore, for probabilistic modeling of stress-based 
FLD in section 4, the above new random vector, 
which consists of K, n, and R along with mean values 
and variances from Eq. (24) to (29) is used instead of 
the random vector Z [ , , , , , , , , ,i q i q i qp p t t h h= L L L  

]Tµ . 
 

4. Probabilistic modeling of stress-based FLD 

4.1 Limit state function 

The possibility of bursting failure in metal forming 
processes can be usually estimated in practice by 
using strain-based FLD, in which major principal 
strain values are plotted against minor principal strain 
values. The deformation having strain distributions 
below the FLC is considered safe from necking or 
bursting. On the other hand, the region above the FLC 
is regarded as unsafe during the forming operation. 
Since the FLC usually approximates experimental 
results which exhibit unavoidable scatter, the FLD 
can be considered to have three kinds of zones such 
as safe, failed and marginal zone as shown in Fig. 1. 
In a similar manner, a safe zone of a stress-based 
FLD is considered as the region where failure is 
highly improbable, while the failed zone is regarded 
as the one defining stress states with a high probabil-
ity of failure. In general, between the two zones, a 
marginal zone is introduced with the probability of 
failure high enough so that the stress state cannot be 
considered safe. Hence, the reliability of the stress-
based FLD is defined as the probability of the limit  
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Fig. 3. Schematic representation of the size of permissible 
region. 

 
stresses falling within the marginal zone with the 
specified permissible region. For a given stress ratio 
α , the definition of a limit state function G(Z) that 
will be used in reliability analysis is as follows: 

 

( )*
1 1( ) ( ) ( )cG σ α σ σ= + ∆ −Z Z  (30) 

 
where *σ∆ is a the size of the permissible region 
which is usually a distance between a 1 ( )cσ α and 
upper bound of a forming limit curve on the stress-
based FLD as shown in Fig. 3. And 1( )σ Z is an ac-
tual limit stress obtained from in Eq. (9), and Z is a 
random vector associated with material parameters, 
namely [ , , ]TK n R=Z along with their corresponding 
mean values and variances. Therefore, the reliability 
of stress-based FLD, which is the probability of the 
limit stresses existing within the marginal zone, is 
represented as 
 

( ) 0
1 Pr[ ( ) 0] 1 ( )Z

G
Reliability G f d

≤
= − ≤ = − ∫ Z

Z Ζ Ζ  

 (31) 
 

where ( )zf Z is a marginal probability density func-
tion of Z . 

 
4.2 Eliability assessment using first-order reliability 

method  

Since it is difficult not only to define the probability 
function but also to compute the probability in Eq. 
(31), the first-order reliability method(FORM) is 
adopted in this work. In FORM, the probability of the 
limit stress existing within the marginal zone can be 
represented by the minimum distance from the limit 

state function ( ) 0G =Z to the origin of the reduced 
variates [13]. The point on the failure surface, 
( * * *

1 2, , , sZ Z Z′ ′ ′L ), having the minimum distance to 
the origin may be determined as 
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where the uncorrelated reduced variates are 

( ) /
ii i i ZZ Z Z σ′ = − , where iZ is a mean value and 

iZσ is its standard deviation of random variable iZ , 
respectively. Using the method of Lagrange’s multi-
plier, 
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satisfied: 
 

1/ 2= 0
( )T

Gλ
′∂ ∂

+ =
′ ′′ ′∂ ∂

Π Z
Z ZZ Z

 (34) 

( ) 0G
λ

∂
= =

∂
Π Z  (35) 

 
where the gradient vectors are 1[ / , /G Z G′∇ = ∂ ∂ ∂G  

2 , , / ]TsZ G Z′ ′∂ ∂ ∂L . From Eq. (35), ( Tλ = ∇ ∇G G 1/ 2)− . 
Thus the minimum distance yields 1/ 2

min( )T ω′ ′ =Z Z as 
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where the derivatives *∇G are evaluated at 
( * * *

1 2, , , sZ Z Z′ ′ ′L ). Using the reliability index ω , the 
most probable point on the failure surface becomes 

* *
i iZ γ ω′ = − , in which *

iγ is the direction cosines 
along the axes iZ ′ are as follows: 
 

* *
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i
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For a limit state function ( )G Z , the first-order reli-
ability method employed in this work can be summa-
rized as the following six steps: 
(a) Assume initial values of *

iZ ; i = 1, 2, … , s and 
obtain 
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(b) Evaluate *( / )iG Z ′∂ ∂ and *

iγ at *
iZ ′ . 

(c) Form * *
ii i i ZZ Z γ σ ω= − . 

(d) Substituting above *
iZ in * * *

1 2( , , ... , ) 0sG Z Z Z =  
and solve for ω . 

(e) Using the ω obtained in Step (d), reevaluate 
* *

i iZ γ ω′ = − . 
(f) Repeat Steps (b) through (e) until convergence is 

obtained. 
 

4.3 Monte-Carlo simulation 

The reliability of stress-based FLD obtained from 
the analytical method using FORM is verified with 
the Monte-Carlo simulation(MCS). The raw random 
numbers generated by a computer, which follows a 
given probability distribution of the variable, are used 
to devise the strength coefficient, work hardening 
exponent and normal anisotropy values. The three 
random material parameters can be obtained as 

 
1

2

3

K

n

R

K K r
n n r

R R r

σ
σ

σ

= +
= +

= +

 (38) 

 
where 1r , 2r  and 3r  are zero-mean random num-
bers obeying standard normal distribution law. From 
the Eq. (38), the process of generating random mate-
rial parameters is repeated a number of sample times. 
Consequently the reliability of stress-based FLD us-
ing MCS is estimated by the ratio of the number of 
the stress points existing within the marginal zone to 
the total number of samples as below. 
 

Number of stress points
existed within marginal zoneReliability

Total number of samples
=  (39) 

 
To compare the reliabilities obtained from the ana-
lytical method and the simulation method, the accu-
racy of the computed reliability from the Monte-Carlo 
simulation should be estimated. Moreover, it is desir-
able to know how many simulations, i.e. sample size, 
are required to obtain a certain accuracy. By ap-
proximating the binominal distribution with a normal 
distribution, the following expression for the percent 
error has been developed [13]: 

1 Pr[ ( ) 0]% 200

Pr[ ( ) 0]

GError
Total number of

samples G

− ≤
=

× ≤

Z

Z

 (40) 

 
In this work, in order to confirm the accuracy of the 
estimated failure probability Pr[ ( ) 0] 0.0001G ≤ =Z   

0.00002± , i.e. reliability of 0.9999 0.00002± , the 
total number of samples of 1,000,000 is used. 

 
5. Results  

5.1 Analytically determined standard deviations of K, 
n and R  

Consider a tube with the initial inner radius of 32.5 
mm, wall thickness of 2.0 mm and total length of 300 
mm. Experimental data measured from a bulging test 
for the tube under five different pressure levels are 
listed in Table 1. All measured data were considered 
as normally distributed random variables. Since only 
five samples for each pressure level have been used, 
the standard deviation of each data was appropriately 
presumed. First, in order to evaluate the statistical 
correlation between the material parameters and 
measured data, the internal pressure p, thickness t, 
bulge height h, and friction coefficient µ were ran-
domly generated by a computer. Since three anisot-
ropy parameters 0r , 45r and 90r are unchangeable 
during the entire procedure of the bulging test, the 
anisotropy parameter was taken as deterministic R of  
 
Table 1. Experimentally measured data and random variables. 
 

Internal  
pressure Thickness Bulge height Random 

variable 
p [MPa] t [mm] h [mm] 

Mean value

1 
2 
3 
4 
5 

17.08
18.00
18.97
19.98
20.08

1.980 
1.958 
1.924 
1.892 
1.668 

65.90 
66.20 
66.75 
68.15 
77.70 

Standard 
deviation pσ  tσ  hσ  

Distribution 
type Normal Normal Normal 

Friction  
coefficient Anisotropy parameters Random 

variable 
µ  0r  45r  90r  

Mean value 0.1 1.43 0.87 1.54 
Standard 
deviation µσ  

0rσ  
45rσ  

90rσ  

Distribution 
type Normal Normal Normal Normal
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Fig. 4. Statistical histogram for strength coefficient K gener-
ated randomly with pσ =0.1 MPa, tσ =0.01 mm, hσ =0.1 
mm, µσ =0.01. 

 
1.1775 during generating the measured data of the 
bulging test. Fig. 4 shows the statistical histogram for 
the strength coefficient K generated from 1,000,000 
samples. The histograms for the work-hardening ex-
ponent n and the normal anisotropy value R are plot-
ted in Figs. 5 and 6. Table 2 lists the comparison of 
mean values and standard deviations of K and n ob-
tained analytically and statistically with the standard 
deviations of the measured data pσ =0.1 MPa, 

tσ =0.01 mm, hσ =0.1 mm, µσ = 0.01, and 
R =1.1775. When there is enough data about experi-
mental measurements of p, t and h, the standard de-
viations of the data can be statistically obtained. As 
mentioned above, since sufficient data is not available, 
those standard deviations were properly assumed in 
this study. In addition, the table compares the mean 
value and standard deviation of the anisotropy pa-
rameter R with the deviation of 

0rσ =
45rσ =

90rσ =0.1. 
The errors between the analytical and the statistical 
results of the standard deviation are 0.63% for the 
strength coefficient K, 0.03% for the work-hardening 
exponent n, and 0.02% for the anisotropy value R in 
the given variations of measured data. As listed in the 
table, the standard deviations of the material parame-
ters can be successfully predicted from Eqs. (25), (28) 
and (29). Thus, it is validated that the variation of the 
new random variables K, n, R, which are actually 
random outputs of measured data listed in Table 1, 
can be substituted for directly by utilizing the meas-
ured data to assess the reliability of the stress-based 
FLD. The nominal stress-based FLD obtained with 
the mean values of the material parameters listed in 
Table 2 is plotted as a “reference FLSD” in Fig. 3.  

Table 2. Mean values and standard deviations of material 
parameters obtained stochastically and analytically. 
 

Material 
parameters

Statistical 
result(I) 

Statistical 
result(II) 

Analytical 
result 

Error
[%] 

K 
[MPa]

K
Kσ

517.503 
10.076 

517.492 
10.096 

515.967 
10.150 

0.30
0.63

n n
nσ

0.1697 
7.7579E-3 

0.1697 
7.7721E-3 

0.1675 
7.7626E-3 

1.30
0.03

R R
Rσ

1.1774 
6.1141E-2 

1.1775 
6.1310E-2 

1.1775 
6.1237E-2 

0.00
0.02
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Fig. 5. Statistical histogram for work-hardening exponent n 
generated randomly with pσ =0.1 MPa, tσ =0.01 mm, 

hσ =0.1 mm, µσ =0.01. 
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Fig. 6. Statistical histogram for anisotropy parameter R gen-
erated randomly with 

0rσ =
45rσ =

90rσ =0.1. 
 
Moreover, in order to compare the stress-based FLD 
in Fig. 3 and a strain-based FLD in the tube hydro-
forming process, the nominal strain-based FLD calcu-
lated with the same material parameters listed in Ta-
ble 2 is shown in Fig. 7. 
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Table 3. Probability of limit stresses existing within marginal 
zone with different sizes of permissible region( Kσ =10.150 
MPa, nσ =7.7626E-3, Rσ =6.1237E-2, α =0.5). 
 

*σ∆  
[MPa] FORM MCS(I) MCS(II) Error 

(%) 
0 
5 
10 
15 
20 
25 
30 

0.50000 
0.71748 
0.87371 
0.95587 
0.98798 
0.99744 
0.99957 

0.49803 
0.71346 
0.86800 
0.95209 
0.98660 
0.99691 
0.99947 

0.49791 
0.71315 
0.86799 
0.95188 
0.98619 
0.99687 
0.99944 

0.41 
0.59 
0.66 
0.41 
0.16 
0.06 
0.01 
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Fig. 7. Nominal strain-based FLD calculated with K = 
515.967 MPa, n =0.1675, and R =1.1775. 

 
5.2 Reliability assessment using FORM 

To analytically calculate the probability of limit 
stresses existing within the marginal zone in Eq. (31), 
the first-order reliability method(FORM) is adopted 
and verified with Monte-Carlo simulation(MCS). As 
a result, Table 3 compares the probabilities calculated 
from FORM and MCS with different size of permis-
sible region taking the standard deviation of the three 
material parameters as Kσ =10.150 MPa, nσ = 
7.7626E-3, Rσ =6.1237E-2 under the stress ratio 
α =0.5. These standard deviations come from the 
standard deviations of the measured data pσ =0.1 
MPa, tσ =0.01 mm, hσ =0.1 mm, µσ = 0.01, and 

0rσ =
45rσ =

90rσ =0.1. The simulation usually takes 
about 2.82 seconds on a Compaq Alpha-EV6.7 
CPU(667 MHz), while the analytical method takes 
about 1.95 milliseconds on the same machine. It is 
evident that the probability of limit stresses falling 
within the marginal zone is increased with increasing 
the permissible region of the marginal zone. The  

Table 4. Probability of limit stresses existing within marginal 
zone with respect to deviation of bulge test data( *σ∆ = 20 
MPa, Rσ =6.1237E-2, α =0.5) 
 

Standard deviation of 
material parameters Standard deviation of 

bulge test data Kσ  
[MPa] nσ  

Probability

pσ  
[MPa] 

0.01 
0.1 
0.2 
0.5 

9.262 
10.150 
12.459 
22.820 

7.325E-3 
7.763E-3 
8.960E-3 
1.485E-2 

0.9926 
0.9880 
0.9704 
0.8574 

tσ  
[mm] 

0.001 
0.01 
0.02 
0.05 

6.668 
10.150 
16.746 
39.018 

4.640E-3 
7.763E-3 
1.333E-2 
3.161E-2 

0.9992 
0.9880 
0.9224 
0.7326 

hσ  
[mm] 

0.01 
0.1 
0.2 
0.5 

9.058 
10.150 
12.906 
24.727 

6.835E-3 
7.763E-3 
1.006E-3 
1.971E-2 

0.9936 
0.9880 
0.9654 
0.8352 

µσ  

0.001 
0.01 
0.05 
0.1 

9.889 
10.150 
15.158 
25.017 

7.713E-3 
7.763E-3 
8.889E-3 
1.173E-2 

0.9894 
0.9880 
0.9441 
0.8389 

 
maximum error between the analytical and the simu-
lation method is 0.66% in the given variation of mate-
rial parameters. From the results, it is verified that the 
reliability of stress-based FLD, which is defined as 
the probability of limit stresses falling within the mar-
ginal zone, can be successfully calculated based on 
FORM. 

 
5.3 Statistical evaluation of stress-based FLD 

The reliability for limit stresses existing within the 
marginal zone, whose band width is assumed to be 

*σ∆ =20 MPa under the stress ratio α =0.5, with 
respect to the standard deviation of the measured data 
obtained from a bulge test is given in Table 4. As can 
be seen, the reliabilities are decreased with increasing 
the standard deviation of the measured data. Table 5 
lists probabilities of limit stresses existing within the 
marginal zone with respect to different deviation of 
anisotropy parameters taking the size of permissible 
region and the standard deviation of the other parame-
ters as *σ∆ =20 MPa, Kσ =10.150 MPa, nσ = 
7.763E-3. It leads to decrease of the probability with 
increasing the standard deviation of the anisotropy 
parameters. 

To statistically evaluate the forming limit on the 
stress-based FLD, three example cases with different 
standard deviations of random variables were em-
ployed as listed in Table 6. Using the three different 
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Table 5. Probability of limit stresses existing within marginal 
zone with respect to deviation of anisotropy parame-
ters( *σ∆ =20 MPa, Kσ =10.150 MPa, nσ =7.763E-3, α = 
0.5).  
 
Standard deviation of anisot-

ropy parameters Rσ  Probability 

0r
σ  

90rσ  

0.01 
0.1 
0.2 
0.5 

5.596E-2 
6.124E-2 
7.500E-2 
1.369E-1 

0.9887 
0.9880 
0.9857 
0.9655 

45rσ  

0.01 
0.1 
0.2 
0.5 

3.571E-2 
6.124E-2 
1.061E-1 
2.525E-1 

0.9906 
0.9880 
0.9777 
0.8948 

 
Table 6. Standard deviations of random variables for case 
study.  
 

Variable Unit Case I Case II Case III 

pσ  
tσ  
hσ  
µσ  

0r
σ  

45rσ  

90rσ  

MPa 
mm 
mm 

- 
- 
- 
- 

0.1 
0.01 
0.1 
0.01 
0.1 
0.1 
0.1 

0.25 
0.025 
0.25 
0.025 
0.15 
0.15 
0.15 

0.5 
0.05 
0.5 
0.1 
0.2 
0.2 
0.2 

Kσ  
nσ  
Rσ  

MPa 
- 
- 

10.150 
7.763E-3 
6.124E-2 

25.374 
1.941E-2 
9.186E-2 

54.511 
3.956E-2
1.225E-1

 
Table 7. Band width of FLSD with desired confidence level.  
 

*σ∆ [MPa] Confidence 
Level β  α  

Case I Case II Case III

75% 

-0.75 
-0.50 
0.00 
0.10 
0.20 

-0.352
0.056
0.541
0.614
0.668

4.897 
5.042 
6.052 
6.448 
6.948 

12.402 
13.109 
14.539 
15.196 
16.086 

26.736 
28.546 
30.885 
32.092 
33.832 

90% 

-0.75 
-0.50 
0.00 
0.10 
0.20 

-0.352
0.056
0.541
0.614
0.668

9.309 
9.601 
11.581 
12.364 
13.350 

23.586 
25.033 
27.930 
29.276 
31.130 

50.792 
54.832 
59.788 
62.465 
66.488 

99% 

-0.75 
-0.50 
0.00 
0.10 
0.20 

-0.352
0.056
0.541
0.614
0.668

16.939 
17.530 
21.333 
22.841 
24.767 

42.901 
45.967 
51.838 
54.651 
58.668 

92.371 
102.267
113.131
119.715
130.791

 
standard deviations of the measured data, the band 
width of marginal zone to be able to satisfy the de-
sired confidence level was determined and listed in 
Table 7. At the given deviations as pσ =0.1 MPa, 

tσ =0.01 mm, hσ =0.1 mm, µσ =0.01 and 

0r
σ =

45rσ =
90rσ =0.1, the size of the permissible re-

gion at plane strain path, i.e. 0β = or 0.541α = , is  
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Fig. 8. Forming limit stress diagrams for Case I along with 
different confidence levels. 
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Fig. 9. Forming limit stress diagrams for Case II along with 
different confidence levels. 
 
increased from 6.052 MPa up to 21.333 MPa with 
increasing confidence level from 75% to 99%. In the 
case of pσ =0.5 MPa, tσ =0.05 mm, hσ =0.5 mm, 

µσ =0.05, and 
0rσ =

45rσ =
90rσ =0.2, the band width 

of the stress-based FLD should be increased from 
30.885 MPa to 113.131 MPa to satisfy their corre-
sponding confidence level from 75% to 99%. As can 
be seen, the larger deviation of the measured data 
results in the wider marginal zone on the locus of the 
FLC at the same confidence level. In addition, the 
increased stress ratio brings out the broader band 
width of the FLC as well. Figs 8, 9 and 10 show the 
upper bound of the stress-based FLD to be satisfied 
with a confidence level of 50%, 75%, 90% and 99% 
at the given material parameter deviations. It is well 
noted that a smaller deviation of material parameter 
results in narrower band width of the forming limit 
curve on the stress-based FLD. 
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Fig. 10. Forming limit stress diagrams for Case III along with 
different confidence levels. 

 
6. Conclusions 

In this work, with taking into account the random 
characteristics throughout the experiment procedure, 
a novel approach to statistically predicting a bursting 
failure in hydroforming processes was proposed. 
Since bursting is an irrecoverable phenomenon due to 
local instability, the analytical stress-based FLD using 
the classical diffuse necking criterion was introduced. 
In order for stochastic modeling of the stress-based 
FLD with confidence level, all experimental data 
measured during a bulge test are assumed as normally 
distributed random variables. And then the statistical 
correlation between the measured data during the 
bulge test and the material parameters was evaluated 
by using the first-order approximated mean value and 
variance. The errors between the analytically pre-
dicted standard deviation and the statistical results are 
0.63% for the strength coefficient K, 0.03% for the 
work-hardening exponent n, and 0.02% for the anisot-
ropy value R in the given variations of measured data. 
In addition, in order to assess the reliability of stress-
based forming limit curve, a first-order reliability 
method was adopted and verified with Monte-Carlo 
simulation method. As a result, the errors between the 
analytical and the simulation method were less than 
0.66% in the given variation of material parameters. It 
is implied that the reliability of stress-based FLD, 
which is defined as the probability of limit stresses 
falling within the marginal zone, can be successfully 
calculated based on the first-order reliability method. 
Moreover, at a given deviation of material parameters, 
the bandwidth of the forming limit curve on the 
stress-based FLD was increased with increasing con-
fidence level. A larger deviation of the material pa-

rameters results in a wider marginal zone on the locus 
of the FLC at the same confidence level. The in-
creased stress ratio brings out a little broader band 
width of the FLC as well. With the proposed ap-
proach, a product designer and manufacturing engi-
neer can be helped to robustly evaluate the forming 
limit in hydroforming processes. 
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